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We employ numerical simulations to explore the development of flow-induced
self-excited oscillations in three-dimensional collapsible tubes which are subject to
boundary conditions (flow rate prescribed at the outflow boundary) that encourage
the development of high-frequency oscillations via an instability mechanism originally
proposed by Jensen & Heil (J. Fluid Mech., vol. 481, 2003, p. 235). The simulations
show that self-excited oscillations tend to arise preferentially from steady equilibrium
configurations in which the tube is buckled non-axisymmetrically. We follow the
growing oscillations into the large-amplitude regime and show that short tubes tend
to approach an approximately axisymmetric equilibrium configuration in which the
oscillations decay, whereas sufficiently long tubes develop sustained large-amplitude
limit-cycle oscillations. The period of the oscillations and the critical Reynolds
number beyond which their amplitude grows are found to be in good agreement
with theoretical scaling estimates.

1. Introduction

The Starling resistor is an experimental device for the study of flows in collapsible
tubes. It was originally developed by Knowlton & Starling (1912) to allow the
adjustment of the arterial resistance in experimental studies of the mammalian heart
but has since become a popular device for the study of a wide variety of physiological
fluid—structure interaction problems. In the typical experimental set-up, sketched in
figure 1, a thin-walled elastic tube is mounted on two rigid tubes and viscous fluid
is driven through the elastic segment, either by an imposed pressure drop or by a
volumetric pump. The elastic tube is surrounded by a pressure chamber which allows
the external pressure p,., to be controlled independently of the fluid pressure.

If the transmural pressure (the difference between the external and internal pressure)
exceeds a certain threshold, the initially axisymmetric elastic tube tends to buckle non-
axisymmetrically. Once buckled, the tube is very flexible and even small changes in
the fluid pressure can induce large changes in the wall shape, resulting in strong
fluid-structure interaction. This can have a strong effect on the system’s pressure—
flow relationships. For instance, depending on the boundary conditions, the system
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FIGURE 1. Sketch of the Starling resistor, a thin-walled elastic tube, mounted on two rigid
tubes and enclosed in a pressure chamber.
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FiGURE 2. Sketch of the sloshing flows generated by the oscillatory wall motion in the
two-dimensional collapsible channel analysed by Jensen & Heil (2003). The sloshing flow
has an inviscid core region, with Stokes layers near the walls.

may display pressure-drop or flow-rate limitation. The latter is observed in a variety
of physiological fluid—structure interaction problems, e.g. during forced expiration.
The most intriguing feature of the system is its propensity to develop sustained
large-amplitude self-excited oscillations when the flow rate exceeds a critical value,
again mirroring the behaviour observed in many physiological flow problems, such as
the occurrence of wheezing during forced expiration, or the development of Korotkoff
sounds during sphygmomanometry. We refer to Grotberg & Jensen (2004) for a more
detailed discussion of physiological applications of collapsible tube flows, and to
Bertram (2003) for a review of experimental studies of flows in the Starling resistor.
The review paper by Heil & Jensen (2003) provides an overview of early theoretical
models of flows in collapsible tubes. Most of these were either based on simplified one-
dimensional analyses that involve a large number of ad hoc approximations, or were
computational studies of the corresponding two-dimensional system — a collapsible
channel in which part of one of the sidewalls is replaced by a pre-stressed elastic
membrane (e.g. Luo & Pedley 1996, 1998 ; Luo et al. 2008; Liu et al. 2009). Self-excited
oscillations in collapsible channel flows were also considered by Jensen & Heil (2003),
who employed asymptotic techniques to derive explicit predictions for the critical
Reynolds number at which self-excited oscillations first develop. Their asymptotic
analysis applies in a parameter regime in which the wall tension is so large that
the wall performs a high-frequency oscillation which drives a large-Strouhal-number
oscillatory flow in the channel. The analysis identified a simple mechanism by which
the oscillating wall can extract energy from the mean flow. Assuming that the wall
performs oscillations with a ‘mode 1’ axial mode shape (characterized by a single
extremum in the displacement near the middle of the elastic segment, as sketched in
figure 2), the oscillatory wall motion periodically displaces some of the fluid in the
collapsible section and thus generates oscillatory axial ‘sloshing flows’ in the rigid
upstream and downstream sections. Heil & Jensen (2003) decomposed the flow field
u” into its mean, @", and a time-periodic perturbation #” = (1, v*). They then showed
that, in the parameter regime considered, u is governed by a balance between
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unsteady axial fluid inertia, p 9%*/9t", and the axial pressure gradient, dp*/dx",
resulting in a blunt velocity profile in the core of the channel, with thin Stokes layers
near the wall. The sketch in figure 2 correctly suggests that the sloshing flows in
the upstream and downstream sections will generally have different amplitudes. For
instance, if the downstream rigid section is much longer than the upstream one, most
of the fluid is displaced into the upstream segment since it offers less viscous and
inertial resistance to the flow. The key observation made by Jensen & Heil (2003) is
that the oscillatory sloshing flows generate an influx/outflux of kinetic energy at the
upstream/downstream ends of the system. If the amplitude of the sloshing flows at
the upstream end exceeds that at the downstream end, the sloshing flows therefore
create a net influx of kinetic energy into the system. If this exceeds the additional
losses associated with the oscillatory flows (primarily, the additional losses due to
the viscous dissipation in the Stokes layers) the system can extract energy from the
mean flow, allowing the oscillations to grow in amplitude. Heil & Jensen (2003)
demonstrated excellent agreement between their theoretical predictions and direct
numerical simulations for large wall tensions. Furthermore, even the large-amplitude
limit-cycle oscillations that developed in channels with relatively small wall tensions
showed good qualitative agreement with the theoretical predictions, even though
the frequency of the oscillation was not particularly large. Even oscillations with
Strouhal numbers as low as St ~0.05 still behaved essentially as predicted by the
large-Strouhal-number theory.

Heil & Waters (2006) showed that, while the instability mechanism identified by
Jensen & Heil (2003) is, in principle, independent of the spatial dimension, it is
unlikely to be able to explain the development of self-excited oscillation in initially
axisymmetric (or weakly buckled) three-dimensional collapsible tubes. This is because
the change in tube volume induced by the slight non-axisymmetric buckling of an
initially axisymmetric tube (with displacement amplitude of O(¢)) only induces volume
changes of size O(e?). Hence the axial sloshing flows induced by the oscillatory wall
motion are much weaker than in the corresponding two-dimensional system where an
O(¢) wall deflection generates O(¢) sloshing flows. Heil & Waters (2006) showed that
in three-dimensional axisymmetric tubes of moderate length, the flow induced by the
small-amplitude non-axisymmetric buckling of the tube wall is, in fact, dominated
by the transverse flows that develop within the tube’s cross-sections. Furthermore,
to leading order in the displacement amplitude, the transverse flows do not interact
with the axial mean flow. The system can therefore not extract any energy from the
mean flow and the inevitable viscous losses ultimately cause the oscillations to decay.
Heil & Waters (2006) performed numerical simulations of these decaying oscillations,
restricting themselves to a study of the two-dimensional transverse flows within the
cross-sections of an elastic tube, modelling the elastic boundary of the cross-section
as an elastic ring. The simulations showed that decaying non-axisymmetric “Type B’
oscillations, illustrated in figure 3(b), switch to a ‘Type A’ oscillation, illustrated
in figure 3(a), before approaching their ultimate non-axisymmetrically buckled
equilibrium configuration. Heil & Waters (2006) conjectured that the reverse transition
may occur when self-excited oscillations develop from non-axisymmetrically buckled
equilibrium configurations of three-dimensional collapsible tubes. They argued that,
following the onset of the oscillations, the tube wall will initially have to perform
small-amplitude ‘Type A’ oscillations about the buckled equilibrium configuration.
Once the amplitude of these oscillations has grown sufficiently, the system may be
able to cross the axisymmetric state and overshoot into a configuration in which the
cross-section’s major and minor half-axes are reversed, as in a “Type B’ oscillation.
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FiGure 3. Sketch of the tube’s cross-sections during (a) “Type A’ and (b) ‘Type B’ oscillations.

The dashed lines indicate the undeformed axisymmetric cross-sections, the dotted lines
represent the most strongly deformed configurations during the oscillation.

(Note that in Heil & Waters 2006 the ‘Type A/B’ oscillations were referred to as
‘Type I1/T, respectively. We changed their enumeration here to reflect the order in
which the two types of oscillation arise during the onset of self-excited oscillations,
while avoiding a direct conflict in notation.)

Since the instability mechanism identified by Jensen & Heil (2003) relies on the
energetics of the sloshing flows, Heil & Waters (2008) analysed the energy budget
of flows in oscillating collapsible tubes whose walls perform prescribed motions
with period ° and a prescribed mode shape that resembled the eigenmodes of
an oscillating elastic tube. They demonstrated that, provided the magnitude of the
sloshing flows at the upstream end exceeds that at the downstream end, the wall
begins to extract energy from the flow when the mean flow exceeds a critical value.
However, in line with the predictions of Heil & Waters (2006), the extraction of energy
was found to work efficiently only if the tube performed oscillations about a buckled
mean configuration. Heil & Waters (2008) postulated that in an elastic tube the flow
rate beyond which the wall extracts energy from the flow corresponds to the flow rate
beyond which the oscillations would grow in amplitude. Assuming that the period
of the oscillation .7 " is set by a dynamic balance between fluid inertia and the wall’s
bending stiffness K, so that 7" ~a./p/K, where a and p are the undeformed tube
radius and the fluid density, respectively, Heil & Waters (2008) employed scaling
arguments to predict that the critical Reynolds number for the onset of self-excited
oscillations should scale like

aUcri a
Regy =2 p ‘~,/;\/p1<, (L.1)

where u is the dynamic viscosity of the fluid, and the Reynolds number is formed with
the mean velocity of the flow. This scaling was recently confirmed (again for the case
of prescribed wall motion) by Whittaker et al. (2010a,b), using asymptotic methods.
In the present paper we finally explore the onset of self-excited oscillations in
three-dimensional collapsible tubes with full coupling between the fluid and solid
mechanics, using the insight gained from our previous studies to identify regions
of parameter space in which the onset of self-excited oscillations is most likely. We
follow the growing oscillations into the large-amplitude regime and assess to what
extent the system’s behaviour agrees with our previous predictions and conjectures.
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2. The model

We consider the unsteady finite-Reynolds-number flow of a viscous fluid (density
p and viscosity u) through a collapsible tube of undeformed radius a and length
L*, mounted on two rigid tubes of lengths L;, and Lj,,, respectively, as shown

in figure 1. The total length of the tube is Ly, =L,, + L" + Ly,,,. (Throughout
this paper, asterisks are used to distinguish dimensional quantities from their non-
dimensional equivalents.) Since the influx of kinetic energy is maximized when the
velocity fluctuations are suppressed at the outflow, we drive the flow by imposing a
constant flow rate, V*=V;, at the end of the downstream rigid tube. (We note that
this set-up differs from that employed in most existing collapsible tube experiments
where the flow tends to be driven by an applied pressure drop. However, we believe
that, in principle, our boundary condition could be realized experimentally by driving
the flow with a volumetric pump, attached to the far downstream end of the system.)
At the inlet we impose parallel inflow and subject the flow to zero axial traction. In
the absence of any wall deformation, the flow is therefore steady Poiseuille flow.

We model the tube as a thin-walled elastic shell of thickness #, Young’s modulus E
and Poisson ratio v, loaded by an external pressure p, , and by the traction that the
fluid exerts on its inside. The shell is assumed to be clamped to the rigid upstream
and downstream tubes.

We non-dimensionalize all lengths with the undeformed tube radius, a, the fluid
velocity with U =V /a?, and the fluid pressure on the associated viscous scale, so that
p =(uU/a) p. Time is non-dimensionalized on the flow’s intrinsic time scale so that
t"=(a/U)t. We parametrize the non-dimensional position vector to the undeformed
tube wall by two Lagrangian coordinates (&;, &) as

ry = (COS(SZL Sin(SZ)’ gl )T ’ (21)

written here with respect to a Cartesian coordinate system (xi, x», x3), where & €
[0, L] and & € [0, 2m]. The same Lagrangian coordinates are used to write the
time-dependent position vector to the deformed tube wall as R, (&1, &, 1).

The flow is then governed by the non-dimensional Navier—Stokes equations

0
Re <al; + u-v“) =—Vp+Vu, Veu =0, (22)

subject to the no-slip conditions

aRU)
u= 5 on the wall. (2.3)

The assumption of parallel, axially traction-free inflow implies
p=M1=M2=0 atx3=0. (24)

At the outflow we impose parallel flow with the required flow rate by setting
Uiy =uy; = 0 and /M3 dA = Vo =T at x3=L;y- (25)

We describe the deformation of the tube wall by large-displacement (geometrically
nonlinear) thin-shell theory, using a linear constitutive equation (Hooke’s law) because
non-axisymmetric buckling of thin-walled elastic tubes only induces small strains. We
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non-dimensionalize all solid mechanics stresses on the tube’s bending stiffness:
E h\’
K=—F77--—-+(-]. 2.6
12(1 —v?) <a> 26)

The position vector to the deformed tube wall is then determined by the principle of
virtual displacements,

n oL 5 1 /h\?
/ / E7 |\ Yapdvys + =5 | — | Kapdicys | d1 dé
A 12 \a

1 h 2 2n L
=12<a> /0 /0 fSR,JAdE dE, (27

where y,s and kqp are the mid-plane strain and bending tensors, respectively, and
E“P7% is the fourth-order tensor of elastic constants. The components of the load
vector f are given by

ou; ou ;
fi = peeri -0 (pNi - ( " + uj) Nj> R (28)
8xj Bu,-
where
nU
= — 2.
0=12. 29)

and the N; are the component of the outer unit normal.
For a fixed tube geometry, the problem is therefore governed by three main non-
dimensional parameters,
_ paU nU

Re , O0=— and p.y, (2.10)
n akK

which represent the ratio of the fluid’s inertial and viscous stresses, the ratio of the
fluid’s viscous stresses to the wall stiffness and the ratio of the external pressure to
the wall stiffness, respectively. To facilitate the interpretation of the results, we wish
to interpret the Reynolds number Re as a measure of the flow rate through the tube.
Following Hazel & Heil (2003), we will therefore perform parameter studies in which
the material parameter

H— & _ pazzK
Q g

is kept constant. For a given value of Re, the parameter Q then follows from

Q =Re/H. The large wall stiffnesses required to obtain high-frequency oscillations

can be realized by setting H to a sufficiently large value.

(2.11)

3. Discretization

We discretized the governing equations using Heil & Hazel’s object-oriented multi-
physics finite-element library oomph-1ib (Heil & Hazel 2006), available as open-source
software at http://www.oomph-1ib.org. In typical experiments the collapsible tube
tends to buckle in a two-lobed mode. Therefore we discretized only a quarter of the
domain, x, x; = 0 and applied appropriate symmetry conditions in the planes x; =0
and x, =0. The arbitrary Lagrangian—Eulerian form of the Navier—Stokes equations
was discretized with hexahedral Taylor—Hood (Q2Q1) elements on a body-fitted mesh,
using oomph-1ib’s algebraic node update procedure to adjust the fluid mesh in
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FIGURE 4. (a) Sketch illustrating the radii of the control points used to characterize the tube’s
deformation. (b) The tube’s steady load-displacement diagram in the absence of fluid—structure
interaction for L =10, v=0.49, h/a =1/20.

response to the changes in the wall shape. The flux constraint (2.5) was incorporated
by treating the outflow pressure as an unknown and adding (2.5) to the governing
equations. The principle of virtual displacements was discretized with quadrilateral
Hermite elements. Steady simulations were performed with a displacement-control
technique, imposing the degree of collapse by prescribing the radial displacement of a
control point on the tube wall and regarding the external pressure required to achieve
this deformation as an unknown. This allowed us to compute the complicated load-
displacement curves for the short tubes (shown in figure 5) for which the axisymmetric
configuration loses its stability via a subcritical bifurcation. The time-integration was
performed with an adaptive second-order BDF scheme (see e.g. Gresho & Sani
2000). The discretized fluid and solid equations were coupled monolithically and the
large system of nonlinear algebraic equations to be solved at every time step of
the implicit time-integration procedure was solved by oomph-1lib’s Newton solver.
GMRES, preconditioned by oomph-1ib’s FSI preconditioner (Heil, Hazel & Boyle
2008), was used to solve the linear systems arising in the course of the Newton
iteration. Selected runs were performed with various spatial and temporal resolutions
to confirm the mesh- and time-step-independence of the results (see figures 11, 14 and
15 and the Appendix).

4. Results
4.1. Short tubes

We start by studying the development of self-excited oscillations in the relatively
short collapsible tubes (of length L = 10, wall thickness & /a =1/20 and Poisson ratio
v =0.49) that were analysed in the steady computations by Hazel & Heil (2003). We
set the lengths of the upstream and downstream rigid tubes to L,, =1 and Lgg, =8,
respectively, and keep the material parameter H at a constant value of H = 10%
We explore the tube’s behaviour at various Reynolds numbers, using the external
pressure, p., to control its collapse. Throughout this paper we characterize the tube’s
deformation by plotting the radii, R, and R”, of two material control points that
are located in the tube’s horizontal and vertical symmetry planes, half-way along the
elastic segment (see figure 4a).
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FiGURE 5. The tube’s steady load-displacement diagram for Re = 65, 85, 105 (increasing in the
direction of the arrow) for a tube of length L = 10 and H = 10*. The long-dashed line shows the
load-displacement diagram in the absence of any fluid—structure interaction. Ly, =1, Ljown =8,
v=0.49, h/a=1/20.

4.1.1. Steady solutions

To explain the tube’s steady load-displacement characteristics, we start by
considering its behaviour in the absence of any flow. For sufficiently small (or
negative) values of p,.,,, the tube is slightly compressed (or inflated) and it deforms
axisymmetrically, so that R(EEI =R5},. In this mode, the tube is very stiff and large
changes in p,, are required to induce even small changes in the tube shape. In
the load-displacement diagram shown in figure 4(b) this regime is represented by the
nearly straight dotted line of small negative slope. When the external pressure exceeds
a critical value of p., = p£§§‘6k11=6.09 (point A), the axisymmetric configuration
becomes statically unstable and the tube buckles non-axisymmetrically. (The buckling
pressure is about twice as large as that of an infinitely long tube (or a ring) because
the clamped ends of the finite-length tube provide additional structural support.) The
loss of stability occurs via a subcritical bifurcation and for p.y > p2“* the tube’s

only statically stable equilibrium configurations are strongly buckled tube shapes,
represented by the branches B-E (B'-E’), along which R <1 and R > 1. (Note

that exchanging Rl[ﬂ, and Rt[f,], corresponds to a simple rigid-body rotation of the tube
by 90°.) In this regime an increase in p,,; continuously increases the tube’s collapse.
A reduction in p,. reopens the tube until the statically stable non-axisymmetric
solution branch disappears at the limit point C (C’) where p.; =5.01. The branch
C-A (C'-A) represents statically unstable non-axisymmetric equilibria.

Figure 5 illustrates how the fluid flow affects the system’s steady behaviour by
plotting the tube’s load-displacement characteristics at three Reynolds numbers
(Re=65,85 and 105, increasing in the direction of the arrow; the long-dashed
curve corresponds to the case without fluid flow). Since the fluid pressure is kept
constant at the tube’s far upstream end (see (2.4)), the pressure drop required to drive
the viscous flow is generated by a negative pressure at the tube’s far downstream
end. The presence of the flow therefore reduces the (internal) fluid pressure, and for
a given value of p,,, a fluid-conveying tube is subject to a larger compressive load
than a tube without any through-flow. Hence in the presence of flow, a smaller value
of p.. 1s required to compress the tube sufficiently to induce its non-axisymmetric
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FIGURE 6. Steady flow field in a strongly collapsed tube (Rc[,:gl =0.25) at a Reynolds number of
Re =105. The plot shows 3/4 of the tube wall and profiles of the axial velocity. The direction
of the flow is from left to right. The thick solid lines indicate the ends of the rigid tubes.
L=10, Ly =1, Lgpwn =8, v=0.49, h/a=1/20 and H =10*

buckling. This effect is enhanced at larger flow rates (Reynolds numbers) since an
increased flow rate increases the viscous pressure drop along the tube. This explains
why p“*1 decreases with an increase in Reynolds number.

Once the tube has buckled non-axisymmetrically, the reduction in its cross-sectional
area increases the viscous flow resistance, requiring an even larger pressure drop along
the tube to maintain the imposed flow rate. Furthermore, the collapse increases the
axial velocity in the collapsed region which leads to a further local reduction in fluid
pressure due to the Bernoulli effect. Both effects are strongly destabilizing in the sense
that an increase in the tube’s collapse increases the compressive load on the tube
wall yet further. At sufficiently large Reynolds numbers this creates a second limit
point in the load-displacement curve beyond which the flow-induced increase in the
compressive load on the wall exceeds the increase in the elastic restoring forces. Over
the range of deformations considered in figure 5, no statically stable non-axisymmetric
steady solutions exist beyond this point. (It is possible that, in an experiment, the
occurrence of opposite wall contact when the tube collapses yet further may increase
the tube stiffness sufficiently to restabilize the system; however, such states are beyond
the scope of this study.) With a further increase in the Reynolds number the small
region in which statically stable buckled solutions exist disappears altogether.

Figure 6 shows a plot of the flow field (three quarters of the tube wall and profiles of
the axial velocity) in a strongly collapsed tube at a Reynolds number of Re = 105. The
increase in the axial velocity in the most strongly collapsed cross-section, responsible
for the destabilizing compression via the Bernoulli effect, is clearly visible. The velocity
profiles downstream of the most strongly collapsed cross-section show first signs of
the two ‘jets’ that were discussed in more detail by Hazel & Heil (2003). However, at
this relatively low Reynolds number, transverse diffusion of momentum returns the
flow towards a Poiseuille profile over a few diameters.

4.1.2. Unsteady solutions

We will now investigate the temporal stability of the solutions using the following
procedure: we use a steady solution for a certain external pressure as the system’s
initial condition at =0. For ¢t >0, we change p., and compute the system’s time-
dependent response to this perturbation. We focus on the stability of the non-
axisymmetrically buckled steady states since Heil & Waters (2006) predict these to be
most susceptible to the instability mechanism described in § 1. (The results presented
below will confirm that the axisymmetric configuration tends to be temporally stable,
as anticipated.)

Figure 7 illustrates the system’s evolution for a range of Reynolds numbers. In each
case we used an initial condition for which Rm (t=0)=0.375; for t >0 we set the
external pressure to the value required to hold the tube in the adjacent equilibrium
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FiGure 7. Evolution of the control radius RB}I for Re =85 (dashed), 95 (dash-dotted) and

105 (solid). In all cases the steady solution for RL‘EI =0.375 was used as the initial condition

at r=0. For r >0 we set p, to the value that corresponds to the equilibrium state with
RU =04 L=10, L,y =1, Lgon =8, v=0.49, hja=1/20 and H = 10*.
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FiGgure 8. Evolution of the control radius Rl[tl,], for Re=105. L =10, Ly, =1, Ljown =38,

v=0.49, h/a =1/20 and H = 10",

configuration for which R!!, =0.4. (We note that each computation inevitably starts

from a slightly different initial configuration since the steady solution whose stability
we wish to investigate does itself depend on the Reynolds number. However, in all
cases considered, both equilibrium configurations were statically stable.) For small
Reynolds numbers the system performs decaying ‘Type A’ oscillations about the new
equilibrium configuration. An increase in the Reynolds number increases the period
of the oscillation and decreases the decay rate. For Re = 105 the oscillation grows in
amplitude, indicating that the static equilibrium configuration has become unstable
via a Hopf bifurcation.

Figure 8 follows the growing oscillation for the Re =105 case into the large-
amplitude regime. Initially the tube continues to perform growing ‘“Type A’ oscillations
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about the non-axisymmetric equilibrium configuration corresponding to RC[},],, =0.4.
As the amplitude of the oscillation increases, the system comes closer and closer to
the axisymmetric configuration whenever it passes through its least collapsed state.
The character of the oscillation changes dramatically at r =~ 335, when the oscillation
becomes entrained by the statically stable axisymmetric state. Following the decay
of the complex initial transients between 340 <t < 360, the tube wall performs
high-frequency damped ‘Type B’ oscillations about the axisymmetric equilibrium
configuration.

This behaviour is consistent with the observation by Heil & Waters (2006) that
small-amplitude ‘Type B’ oscillations about the axisymmetric configuration only
displace very small volumes of fluid from the collapsible section. Since the period
of the oscillations is set by a dynamic balance between unsteady fluid inertia and
the wall stiffness, the frequency increases dramatically when the system switches to a
‘Type B’ oscillation, following which a much smaller mass of fluid is involved in the
oscillation. Furthermore, the reduction in the amplitude of the sloshing flows reduces
the influx of kinetic energy to such an extent that the oscillations decay, as predicted.
We note that the transition from a growing oscillation about a collapsed configuration
to a decaying oscillation about the system’s axisymmetric state is reminiscent of the
behaviour displayed by the lumped-parameter model by Bertram & Pedley (1982)
(see e.g. figure 8 in that paper), though their simulations employed different boundary
conditions.

We performed a large number of additional computations for this tube geometry
but were not able to identify any cases for which the system performed sustained
large-amplitude limit-cycle oscillations. Following the onset of self-excited oscillations,
the tube either reopened towards an axisymmetric configuration (following which the
oscillations decayed as in figure 8), or it underwent a catastrophic collapse towards a
configuration with opposite wall contact which cannot be resolved with our current
computational set-up.

4.2. Long tubes

The non-existence of large-amplitude limit-cycle oscillations for the tube considered
in the previous section is due to the fact that (i) the axisymmetric state loses its
stability to non-axisymmetric perturbations via a subcritical bifurcation, and (ii)
fluid-structure interaction is strongly destabilizing and reduces the range of external
pressures over which statically stable non-axisymmetrically buckled solutions exist to
a regime in which the corresponding axisymmetric state is still statically stable. Any
growing oscillations that arise from the statically stable buckled equilibria therefore
ultimately become entrained by the stable axisymmetric solution. The development of
sustained self-excited oscillations is therefore likely to be encouraged by changes to
the system parameters which (i) change the character of the steady bifurcation from
subcritical to supercritical, and (ii) reduce the destabilizing feedback from the fluid—
structure interaction. Approach (i) may be achieved by subjecting the tube to a large
axial tension and/or by increasing its length; (i) may be achieved by increasing the
wall stiffness via an increase in H. Here, we combine both approaches by increasing
the length of the elastic segment to L =20 and increasing H from 10* to 10°.

4.2.1. Steady solutions

The load-displacement diagram in figure 9 confirms that the change in the problem
parameters has the desired effect. The increase in tube length changes the character of
the bifurcation so that buckling now occurs via a supercritical bifurcation, regardless
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FIGURE 9. The tube’s steady load-displacement diagram for Re = 80, 90, 100 (increasing in the
direction of the arrow) for a tube of length L =20 and H = 10°. The long-dashed line shows the
load-displacement diagram in the absence of any fluid—structure interaction. Ly, =1, Ljown =8,
v=0.49 and h/a=1/20.
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100 (solid). In all cases the steady solution for R, =0.675 was used as the initial condition
at r=0. For t >0 we set p, to the value that corresponds to the equilibrium state with

RU —=0.7. L =20, Ly =1, Lgon =8, v=0.49, hja=1/20 and H = 10°.

of the presence or absence of fluid flow. The increase in H reduces the destabilizing
feedback from the fluid—structure interaction in the large-displacement regime to
such an extent that all post-buckled steady solution branches shown in figure 9 are
statically stable.

4.2.2. Unsteady solutions

Figure 10 shows the results of time-dependent simulations performed using the same
procedure as in §4.1.2. Here we used the steady solution in which the radius of the
control point has a value of R!!), =0.675 as the initial condition, and for ¢ > 0 set pey
to the value required to reopen the tube to R™ =0.7. As before, the system performs

ctrl =
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FIGURE 11. Evolution of the control radius RE}Z for Re=100. The dashed and thick lines
show the results of spatial and temporal convergence tests, discussed in the Appendix. L =20,
Luyp=1, Lgpwn =8, v=0.49, h/a=1/20 and H =10°.

damped oscillations about the new non-axisymmetric equilibrium configuration when
the Reynolds number is sufficiently small. An increase in Reynolds number increases
the period of the oscillation and decreases its decay rate until, at a Reynolds number
of Re =100, the oscillation grows in amplitude.

Figure 11 follows the evolution of the growing oscillation into the large-amplitude
regime. As in the previous case, the system initially performs growing ‘Type A’
oscillation during which the tube oscillates about its non-axisymmetric equilibrium
configuration. As the amplitude of the oscillation increases, the system again gets
closer and closer to the axisymmetric configuration whenever it reaches its least
collapsed state. However, in this case, the axisymmetric configuration is statically
unstable and presents a potential energy barrier. Once the system has extracted
enough energy from the flow it becomes possible to traverse this barrier, allowing
the tube to cross the axisymmetric state into a configuration in which the major and
minor axes of the cross-section are reversed. Subsequently, the system rapidly settles
into a sustained large-amplitude “Type B’ oscillation.

Figure 12 shows representative snapshots of the wall shape and the axial velocity
profiles over half a period of the large-amplitude limit-cycle oscillation. Figures 12(a)
and 12(e) show the system at the two instants when the wall is close to its most
strongly collapsed configuration. At these instants the wall is instantaneously at rest
and all cross-sections convey the same volume flux. As a result the axial velocity in
the most strongly collapsed cross-sections is strongly increased. The axial mode shape
resembles a ‘mode 1’ oscillation, with a (single) minimum of the cross-sectional area
developing approximately halfway along the tube. The periodic change in the tube
volume generates strong sloshing flows which affect the velocity profiles near the inlet.
Overall, the flow field is very smooth (and hence easy to resolve numerically; see the
Appendix), with the sharpest velocity gradients arising in the relatively thick Stokes
layers generated by the sloshing flows (see also figure 16).

Superficially, the system’s large-amplitude limit-cycle oscillations are remarkably
similar to those observed in Jensen & Heil’s (2003) study of self-excited oscilla-
tions in two-dimensional collapsible channels. In both systems the wall performs
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FIGURE 12. Representative snapshots of the flow fields during half a period of the
large-amplitude limit-cycle oscillation at a Reynolds number of Re =100. The plots show 3/4
of the tube wall and profiles of the axial velocity. The thick solid lines indicate the ends of the
rigid tubes. (a) 1 =448.00, (b) t =456.59, (c) t =459.30, (d) t =461.60, (e) t =470.23. L =20,
Lup=1, Lgpn =8, v=0.49, h/a=1/20 and H =10°.

approximately harmonic large-amplitude ‘mode 1’ oscillations about the undeformed
configuration. The details of the oscillations are very different, however. In a two-
dimensional channel the extrema of the periodic wall motion are strongly dilated and
strongly collapsed channels. The periodic motion of a control point on the channel
wall about its undeformed position, with amplitude .o/ and frequency w, so that
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FIGURE 13. Time traces of (a) the radius of the control point, Rp[llgl(t); (b) the tube volume,
Viuve(t); (c) the volume flux at the tube’s far upstream end, V,,(t); (d) its rate of change,

dV,,/dt, during the large-amplitude limit-cycle oscillation shown in figure 11. The thin dashed
lines in (a) and (d) identify the undeformed position of the control point and zero rate of
change of volume flux, respectively.

RE}, ~ 1 + .o/ cos(wt), therefore generates periodic changes (with frequency w) in the

volume of fluid contained in the channel. At sufficiently high frequency, this generates
periodic sloshing flows with a blunt velocity profile (as sketched in figure 2), so that
i ~ .o/ wsin(wt); these induce large axial pressure gradients, 3p/dx ~ .o/’ cos(wt), in
phase with the wall motion.

Conversely, in a three-dimensional collapsible tube, the tube volume is minimal
twice per period when the tube is in its most deformed configurations (as in
figure 12a.e); similarly, the tube attains its maximum volume twice per period,
whenever it passes through its approximately axisymmetric configuration where
R[]]lzl. This is illustrated by the time traces in figure 13. Overall, the motion

ctr
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of the control point, Rc[,lﬂl(t), is approximately harmonic and the tube volume, V;,;.(7),

has a sharp peak when Rc[ﬂl ~ 1. The tube is in one of its two most strongly collapsed
configurations when # ~450. At this instant, the tube attains its minimum volume,
the tube wall is at rest, and the volume flux at the upstream end is equal to the
mean flow rate, Vup= fu-n dA=—Vy=—n (the flow rate is negative because u
and the outer unit normal, n, point in opposite directions when the flow enters the

tube). As the tube reopens, the magnitude of V,, increases before rapidly returning

to the mean value, Vup — —V, at t ~460 when Rc[}gl — 1. At these instants dV,,;./dt
vanishes and the axial sloshing flows must be decelerated to zero. This is shown
clearly in the plot of the volume flux at the tube’s far upstream end, V,, =—dV,,;./dt
in figure 13(c). The sudden deceleration of the flow, reflected by the large spike in
dV,,/dt, requires a large axial pressure gradient which is generated by a large increase
in the fluid pressure at the tube’s far downstream end. The sudden pressurization of
the approximately axisymmetric tube creates transient high-frequency oscillations
during which approximately axisymmetric pressure waves propagate along the tube.
The resulting fluctuations in the flow rate at the tube’s upstream end are clearly
visible in figure 13(c,d).

4.2.3. Relation to the theoretical instability mechanism

The mechanism by which the large-amplitude self-excited oscillations discussed in
the previous sections develop are in pleasing qualitative agreement with the predictions
made by Heil & Waters (2008). We will now examine the early stages of the self-
excited oscillations in more detail to assess if the dependence of their frequency and
growth rate on the system parameters is consistent with the scalings that Heil &
Waters (2008) derived from an analysis of the system’s energy budget. In terms of
the non-dimensionalization used in the current paper, their analysis predicts that the
non-dimensional period of the oscillation (an inverse Strouhal number) should scale
like

g U Re
T = =St'~/Re 0 = —, 4.1
p 0 i (4.1)
while the scaling (1.1) for the Reynolds number at which the system performs
energetically neutral oscillations can be expressed in terms of the parameter H as

Reg = 225t o 9 /oK = VA, (4.2)

I W
We performed a large number of numerical simulations for different values of H,
and for Reynolds numbers in the vicinity of Re.y. In each case we simulated
approximately ten periods of the system’s oscillations which we initiated by the same
procedure described in the previous section but with a smaller initial perturbation
(starting from a steady configuration at which REJ, =0.69). The growth rate 1 and
period 7 were determined by a Levenberg-Marquardt fit of Rl () to the fitting
function

R;ii(t) = R + Rexp(it) cos @’ft + ¢) . (4.3)

The critical Reynolds number was determined from the condition that A(Re,;)=0.
Figure 14(a) shows the period of the oscillations as a function of the Reynolds
number for a range of H values. Over the relatively small range of Reynolds numbers
considered for each value of H, the period can be seen to increase approximately
linearly with Re, consistent with (4.1). Furthermore, 4 decreases with an increase
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FIGURE 14. (a) The period of the oscillation as function of the Reynolds number for a range
of values of H. (b) The same data plotted as a function of Re/H'/%. The straight dashed line
is an extension of the curve for H =4 x 10°. The legend in (a) applies to both figures. The
circular markers for H =4 x 10° were obtained from computations with an increased spatial
resolution (see the Appendix). L =20, L,, =1, Lgown =8, v=0.49 and h/a =1/20.
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FIGURE 15. The critical Reynolds number as a function of H. The circular marker for
H =4 x 10° was obtained from computations with an increased spatial resolution (see the
Appendix). L=20, L,, =1, Lygowy =8, v=0.49 and h/a =1/20.

in the wall stiffness (i.e. an increase in H), which is consistent with the assumption
that the oscillations are governed by a balance of unsteady fluid inertia and the
wall’s elastic restoring forces. However, for the cases considered, the period of the
oscillations is not particularly large, and the largest Strouhal number (achieved for
Re =120 and H =4 x 10°) is just St =1/ =0.08. As a result, the plot of the period
as a function of Re/ \/ﬁ shown in figure 14(b) deviates slightly from the theoretical
prediction, though the scaling becomes increasingly accurate as H (and thus the
frequency of the oscillation) increases.

Figure 15 shows a plot of the critical Reynolds number Re.; as a function
of H. Again, the agreement with the theoretical prediction, Re.; ~ H'*, is very
satisfactory, given the relatively small Strouhal number, and, as for the period, the
agreement improves with increasing H.
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FIGURE 16. Profiles of the axial velocity perturbation in the upstream rigid tube, obtained
by subtracting Poiseuille flow from the computed velocity field, at three instants during a
small-amplitude oscillation. The direction of the mean flow is from left to right. (a) t =30.15,
close to the maximum positive sloshing flow; (b) r=33.15, close to zero sloshing flow;
(c) t=136.15, close to the maximum negative sloshing flow. The period of the oscillation is
7 =12.27. Re=130, H=4 x 10°, L=20, Ly, =1, Lyoyn =8, v=0.49 and h/a =1/20.

Given the relatively low Strouhal numbers of the oscillations, it is desirable to assess
to what extent the character of the sloshing flows in the computations is consistent
with the assumptions of the analysis performed by Heil & Waters (2008); specifically,
we wish to establish if the perturbations to the mean flow can indeed be decomposed
(at least approximately) into a relatively flat core flow region with Stokes layers near
the tube walls. Unfortunately, the extraction of the perturbation velocities from the
full flow field is not straightforward. Within the oscillating segment, the tube wall
undergoes finite-amplitude motions and it is difficult to define the concept of a mean
flow within a spatially varying fluid volume. The fluid volume in the downstream rigid
tube is fixed, but, for the boundary conditions employed in our simulations, there are
no net sloshing flows. Hence the only part of the fluid domain in which the character
of the sloshing flows can be assessed is the upstream rigid tube. Figure 16 shows
plots of the axial velocity perturbation iy = u3(xy, x2, x3, t) — 2(1 — x7 — x3), obtained
by subtracting the Poiseuille flow profile from the instantaneous axial velocity within
the upstream rigid tube. The profiles were extracted at three characteristic instants
of the oscillation at a Reynolds number of Re =130. The wall performs a ‘Type A’
oscillation with an approximate period of J =12.27, corresponding to a Strouhal
number of St =0.08 and thus a Womersley number of o?> = Re St = 10.6. The profile
of the velocity perturbation has the expected structure, with clearly defined Stokes
layers whose (relatively large) thickness is well approximated by the classical estimate
Swomersley = 1/0t =0.31. We are therefore confident that the good agreement between
the theoretical scaling estimates and the computational results shown in figures 14
and 15 is not fortuitous.

5. Summary and discussion

We have presented what we believe to be the first direct numerical simulation
of large-amplitude self-excited oscillations of three-dimensional collapsible tubes.
Guided by predictions from previous theoretical and computational studies, we
applied boundary conditions that facilitate the onset of self-excited oscillations via
the instability mechanism proposed by Jensen & Heil (2003). For sufficiently long
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tubes, the system’s overall behaviour was found to be in good qualitative agreement
with the theoretical predictions, even though in most of the computations the
frequency of the oscillations was not particularly high. Specifically, the dependence
of the period of the oscillation and the critical Reynolds number on the system
parameters was found to be consistent with the scalings found by Heil & Waters
(2008) and Whittaker et al. (2010a,b), which were derived from an analysis of the
system’s energy budget with prescribed wall motion. Following the onset of the
self-excited oscillations (via small-amplitude “Type A’ oscillations about the buckled
equilibrium configuration), the amplitude of the oscillation continued to grow until
the system was able to traverse the (statically unstable) axisymmetric state. Following
this, the system settled into a large-amplitude ‘Type B’ limit cycle oscillation, in
pleasing agreement with Heil & Waters’ (2006) conjecture.

In the present paper we only considered two specific tube geometries and showed
that the length of the elastic segment can have a strong effect on the large-amplitude
oscillations. We note that the tube geometry (including the lengths of the upstream
and downstream rigid tubes) also affects the period and growth rate of the initial
small-amplitude oscillations, and refer to Whittaker et al. (2010a,b) for a discussion
of these dependencies.

Our computational model was deliberately kept as simple as possible and we only
considered the case in which the flow is driven by imposing the volume flux at the
far downstream end since this made the system most susceptible to the development
of self-excited oscillations via the instability mechanism of Jensen & Heil (2003). We
acknowledge that this differs from the typical experimental set-up in which the flow
tends to be driven by an applied pressure drop but note that Whittaker et al. (2010a)
demonstrated (at least for the case of prescribed wall motions) that the instability can
also arise for pressure-driven flows, provided the difference in the amplitude of the
sloshing flows in the upstream and downstream rigid tubes is created by other means,
e.g. by having a downstream rigid tube that is longer than its upstream counterpart,
as in the two-dimensional computations by Jensen & Heil (2003). However, with such
boundary conditions the instability develops at larger Reynolds numbers (since some
kinetic energy is lost through the downstream boundary) and, following the onset of
neutrally stable oscillations, it takes longer for the system to settle into steady-state
oscillations because of transient adjustments to the mean flow. We expect the same
behaviour in the fully-coupled case considered here. We wish to reiterate, however,
that the instability mechanism identified by Jensen & Heil (2003) will not work if
the flow rate is prescribed at the upstream end of the tube (as in the simulations of
Luo & Pedley 1996, say), or if the upstream rigid tube is the longer of the two rigid
segments. With such boundary conditions, self-excited oscillations may, of course, still
develop by other mechanisms.

Since the instability mechanism studied in this paper involves oscillations that are
governed by a dynamic balance between fluid inertia and the tube’s wall stiffness,
wall inertia was not included into our model. This is likely to be justifiable for
sufficiently light or thin-walled tubes, though we acknowledge that the inclusion of
wall inertia would introduce additional modes into the system. This is because a
heavy wall can perform oscillations even in the absence of fluid. It is possible that the
presence of these modes gives rise to additional flutter-type instabilities (Miles 1957;
Benjamin 1963), as observed, e.g. in the two-dimensional simulations of Luo & Pedley
(1996).

The imposition of an exact two-fold symmetry on the flow and wall deformation
was motivated by experimental observations which show that the tube tends to buckle
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in a two-lobed mode. This allowed a significant reduction in the computational cost,
but made it impossible to capture any symmetry breaking bifurcations in the flow that
are likely to arise at sufficiently large Reynolds numbers. Whether such secondary
instabilities play a role in the development of self-excited oscillations as suggested by
Kouanis & Mathioulakis (1999) is still an open question.

The instability mechanism considered here requires the tube to perform oscillations
of sufficiently high frequency. In terms of the non-dimensionalization employed in
this paper, this requires the material parameter H to be sufficiently large. Using the
properties of the rubber tubes used in the experiments by Bertram & Elliot (2003)
and Truong & Bertram (2009) (¢ =6.5 mm, k=1 mm, v=0.5 and E =3.15 MPa)
and assuming water (=102 kg (m s)~! and p =1000 kg m™) as the working fluid,
yields H = 5.38 x 107. This is well in excess of the parameters used in the simulations
in this paper, indicating that sufficiently large values of H can easily be realized
experimentally. We wish to stress, however, that the character of the flow fields
observed during self-excited oscillations in the experiments by Truong & Bertram
(2009) with pressure-driven flows differs significantly from those observed in the
computations presented here. In particular, the velocity perturbations induced by the
wall oscillation were most pronounced in the downstream rigid tube, while the flow
field in the upstream rigid tube remained virtually unaffected by the oscillations,
suggesting that the oscillations observed in these experiments arise via a different
mechanism. While we plan to perform simulations of such oscillations in the near
future, we also hope that experimentalists may be sufficiently intrigued by our
results to initiate an experimental study using the boundary conditions considered
here.

The authors wish to acknowledge many helpful discussions with Sarah Waters,
Robert Whittaker, Oliver Jensen, Andrew Hazel and Chris Bertram. The numerical
simulations benefited greatly from Richard Muddle’s work on oomph-1ib’s parallel
preconditioning framework. The research was supported by a grant from EPSRC.

Appendix. Convergence tests

We performed careful spatial and temporal convergence tests to ensure the mesh
and time step independence of our results. The flow field in the long tubes considered
in §4.2 was very smooth (see figures 12 and 16) and a fairly coarse spatial resolution
involving just 8980 degrees of freedom was sufficient to resolve the flow field. Selected
runs were repeated with a much finer spatial resolution involving 67 550 degrees
of freedom. The time-integration was performed with at least 160 time steps per
period of the oscillation. When analysing the growth rates of the small-amplitude
oscillations in §4.2.3, computations were performed with a fixed time step; in all other
cases, adaptive time stepping was used to allow the resolution of the higher frequency
oscillations that arise whenever the tube approaches the axisymmetric configuration,
as in figures 8 or 13.

Results of representative convergence tests are shown in figure 11 where the
solid and dashed lines were obtained from computations with the standard spatial
resolution, but using different temporal convergence criteria that resulted in average
time steps of Ar=~0.12 (solid) and At ~0.05 (dashed), respectively. The thick solid
line shows the results of a much more costly simulation, performed with the finer
spatial resolution. This simulation was restarted from the results obtained with the
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standard resolution and a uniform mesh refinement was applied before continuing
the time-integration during the system’s large-amplitude limit cycle oscillation.

The different markers for the results with H =4 x 10° in figures 14 and 15 show
the effect of the spatial refinement on the computed period and growth rate of
the oscillations. The square and circular markers represent results obtained on the
standard and refined meshes, respectively.
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